Fine Grained Named Entity Recognition via Seq2seq Framework

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fine-grained Arabic named entity recognition

Named Entity Recognition (NER) is a Natural Language Processing (NLP) task, which aims to extract useful information from unstructured textual data by detecting and classifying Named Entity (NE) phrases into predefined semantic classes. This thesis addresses the problem of fine-grained NER for Arabic, which poses unique linguistic challenges to NER; such as the absence of capitalisation and sho...

متن کامل

Fine-grained Dutch named entity recognition

This paper describes the creation of a fine-grained named entity annotation scheme and corpus for Dutch, and experiments on automatic main type and subtype named entity recognition. We give an overview of existing named entity annotation schemes, and motivate our own, which describes six main types (persons, organizations, locations, products, events and miscellaneous named entities) and finer-...

متن کامل

Fine-Grained Entity Recognition

Entity Recognition (ER) is a key component of relation extraction systems and many other natural-language processing applications. Unfortunately, most ER systems are restricted to produce labels from to a small set of entity classes, e.g., person, organization, location or miscellaneous. In order to intelligently understand text and extract a wide range of information, it is useful to more prec...

متن کامل

Fine-grained Named Entity Classi cation in Machine Reading

Fine-grained named entity classi cation or FG-NEC refers to the process of classifying a set of named entities from naturally occurring texts to the maximum granularity. It is essentially di erent from the traditional coarse-grained NEC (PER, LOC, ORG) in that it requires deep semantic analysis and the FG semantic classes are highly ambiguous. While research has been conducted in an application...

متن کامل

FINET: Context-Aware Fine-Grained Named Entity Typing

We propose FINET, a system for detecting the types of named entities in short inputs—such as sentences or tweets—with respect to WordNet’s super fine-grained type system. FINET generates candidate types using a sequence of multiple extractors, ranging from explicitly mentioned types to implicit types, and subsequently selects the most appropriate using ideas from word-sense disambiguation. FINE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2980431